
Manoj Kumar Singh et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 5), June 2014, pp.66-72

 www.ijera.com 66 | P a g e

A Evaluation of Software Re-Usability Using Software Metrics

through Fuzzy Logic

Manoj Kumar Singh, Govind Kamboj, Avnish Kumar Sharma
M. Tech Scholar, Department of Computer Science and Engineering, Graphic Era University Dehradoon, India

Assistant Professor, Department of Computer Science and Engineering, Graphic Era University Dehradoon,

India

Assistant Professor, Department of Master of Computer Application, Marathwada Institute of Technology,

Bulandshahr, India

Abstract
flexibility and quality through reusability, replace-ability, efficient reusability and scalability are some

additional benefits of Component based software development .Component Based Software Engineering

(CBSE) is a paradigm that aims at constructing and designing systems using a pre-defined set of software

components explicitly created for reuse. According to Clements, CBSE embodies the “the „buy, don‟t build‟

philosophy”. The idea of reusing software components has been present in software engineering for several

decades. Although the software industry developed massively in recent decades, component reuse is still facing

numerous challenges and lacking adoption by practitioners. One of the impediments preventing efficient and

effective reuse is the difficulty to determine which artifacts are best suited to solve a particular problem in a

given context and how easy it will be to reuse them there. So far, no clear framework is describing the

reusability of software and structuring appropriate metrics that can be found in literature. Nevertheless, a good

understanding of reusability as well as adequate and easy to use metrics for quantification of reusability are

necessary to simplify and accelerate the adoption of component reuse in software development.

Keywords— Software Reusability; Software Reusability Metrics; Component-Based Software Development.

I. INTRODUCTION
A component is a reusable, self -contained piece

of software with well specified interface that is

independent of any application. The very important

point which has to be kept in mind, while developing

a component is the reusability aspect, regardless of

whether or not an organization can identify what the

future requirements of the component will be.

Components can be placed on any network node,

depending on application needs and regardless on the

type of particular network structure. An extra effort

must be paid for the additional functionality of the

component beyond the current application‟s need, to

make the component more useful.

Object-oriented technology alone is not enough

to cope with the rapidly changing requirements of

present day applications. One of the reasons is that,

although the Object-Oriented (O-O) methods

encourage one to develop rich models that reflect the

object of problem domain, this does not necessarily

yield software architectures that can be easily adapted

to changing requirements. Moreover, today‟s

applications are large, complex and are not integrated.

Although they come packaged with a wide range of

features but most features can neither be removed,

upgraded independently or replaced nor can be used

in other applications. In particular, O-O methods do

not typically lead to designs that make a clear

separation between computational and compositional

aspects [15].

An application must have some additional

characteristics like robustness, usability, flexibility,

simple installation, reusability, portability,

interoperable, proper documentation etc. to fight with

the advancement in the technology and rapidly

changing requirements. To improve the business

performance, it is necessary to use the latest

technologies available. Today Component Based

Software Development (CBSD) is getting accepted

in the company or an industry as a new

effective development paradigm. It emphasizes the

design and construction of software system using

reusable components. CBSD is capable of reducing

development cost and increasing the reliability of

entire software system using components. The major

advantages of CBSD are in-time and high quality

solutions. Higher productivity, flexibility and

quality through reusability, replace-ability, efficient

reusability and scalability are some additional

benefits of CBSD [5]. Component Based Software

Engineering (CBSE) is a paradigm that aims at

constructing and designing systems using a pre-

defined set of software components explicitly created

for reuse. According to Clements [19], CBSE

RESEARCH ARTICLE OPEN ACCESS

Manoj Kumar Singh et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 5), June 2014, pp.66-72

 www.ijera.com 67 | P a g e

embodies the “the „buy, don‟t build‟ philosophy”.

He also says about CBSE that “in the same way that

early subroutines liberated the programmer from

thinking about details, CBSE shifts the emphasis

from programming to composing software systems”.

The focus of CBSE is reusing whole software

component, not objects. An important motivation for

many organizations for adopting CBSE as their

software development paradigm is to reduce

development cost. One of the main contributions

that CBSE has to this objective is the reuse of

software components in multiple systems. In this way

a software component is developed only once and

can save out development effort multiple times.

A. Component Based Software Engineering

“CBSE is a process that aims to design and

construct software systems using reusable software

components”. If one is familiar with Object Oriented

programming (OOP), it can be useful to think of

CBSE in a similar way. In OOP, code is reused in the

form of objects. These objects are often contained in

vast libraries of reusable code. Frameworks take the

process even further, providing more robust and

disciplined systems of reuse. By obtaining and

reusing parts of systems which have already been

„tried and tested‟, we can exploit the principal

advantages of OOP techniques over procedural

programming techniques. They enable programmers

to create modules1 that do not need to be changed

when a new type of object is added. A programmer

can simply create a new object that inherits many of

its features from existing objects. This makes object-

oriented programs easier to modify. In the same way,

in CBSE, by reusing an existing component you cut

out a lot of the hard work with establishing the

usefulness and in testing that component. Although

some testing will still be required [9,8].

CBSE should, in theory, allow software systems

to be more easily assembled, and less costly to build.

Although this cannot be guaranteed, the limited

experience of adopting this strategy has shown it to

be true. The software systems built using CBSE are

not only simpler and cheaper, but usually turn out to

be more robust, adaptable and updateable. CBSE

allows use of predictable architectural patterns and

standard software architecture leading to a higher

quality end result.

CBSE is an approach to software development

that relies on reuse. It emerged from the failure of

object-oriented development to support effective

reuse. Single object classes are too detailed and

specific. Components are more abstract than object

classes and can be considered to be stand-alone

service providers [13].

B. Software Metrics

As the number of components available on the

market increases, it is becoming more important to

devise software metrics to quantify the various

characteristics of components and their usage.

Software metrics are intended to measure the

software quality and performance characteristics

quantitatively, encountered during the planning and

execution of software development. These can serve

as measures of software products for the purpose of

comparison, cost estimation, fault prediction and

forecasting.

Metrics can also be used in guiding decisions

throughout the life cycle, determining whether

software quality improvement initiatives are

financially worthwhile [1].

A lot of research has been conducted on software

metrics and their applications. Most of the metrics

proposed in literature are based on the source code of

the application.

However, these metrics cannot be applied on

components and component-based systems (CBS) as

the source code of the components is not available to

application developers. Therefore, a different set of

metrics is required to measure various aspects for

CBS and their quality issues.

C. Reusability

Reusability is the degree to which a component

can be reused and reduces the software development

cost by enabling less coding and more integration [2].

The reusability of assets is different in different

contexts. However, there are some characteristics

that generally contribute to the reusability of

assets. Although many of these characteristics apply

to assets in general, we focus in this section, we focus

on components as assets. At a high level, we

distinguish two aspects of reusability i.e. usability

and usefulness [10].

Reusability = Usability + Usefulness

Usability is the degree to which an asset is „easy‟ to

use in the sense of the amount of effort that is needed

to use an asset. Usability as such is independent of

functionality of the component. Usefulness is the

„frequency‟ of suitability for use i.e. usefulness

depends on the functionality, the generality and

quality of a component [10].

D. Objectives of This Proposed Technique

In this paper, various Software metrics and

component based system techniques have been

studied and analyzed.

The main objectives of this proposed work are as

follows:

Manoj Kumar Singh et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 5), June 2014, pp.66-72

 www.ijera.com 68 | P a g e

1) Software reuse is to minimize repetition of work,

development time, cost and efforts and increase

reliability of the systems. It also improves the

reusability and portability of the system.

2) One of the main contributions that CBSE has

to this objective is the reuse of software

components in multiple systems. In this way a

software component is developed only once and can

save out development

3) Effort multiple times.

4) Increased reliability

5) Reduced process risk

6) Effective use of specialists

7) Standards compliance

In the present study, we have taken into account, the

understanding of the components as well, along with

other important factors required for evaluating the

reusability of software components like:

 Customizability

 Interface complexity

 Portability

 Documentation

 Observability

II. RELATED WORK
In case of component-based development,

software reuse refers to the utilization of a software

component with in a product, where the original

motivation for constructing this component was not

known. Here, reuse is seen as black-box reuse, where

the application developer sees the interface, not the

implementation of the component. The interface

contains public methods, user documentation,

requirements and restrictions of the component. If

there is a change in the code of a black-box

component, compiling and linking the component

would propagate the change to the applications that

reuse the component. As the users of the component

trust its interface, changes should not affect the

logical behaviour of the component [3].

As the number of components available in the

market increases, it is becoming more important to

devise software metrics to quantify the various

characteristics of components. Among several quality

characteristics, the reusability is particularly

important when reusing components. Reusability can

measure the degree of features that are reused in

building applications [3]. In the present study, we

have taken into account, the understanding of the

components as well, along with other important

factors required for estimating the reusability of

software components.

III. PROPOSED METHOD
We proposed a Fuzzy Logic based approach for

estimating reusability for component based systems.

It is often impossible to estimate software quality

attributes directly. For example, attributes (say,

reusability, etc.) are affected by many different

factors, and there is no straightforward method to

measure them.

Emphasis in the present work is to estimate

reusability, if the changes require

customization/replacement of the component or

integration code has to be modified.

A. Customizability is defined as the ability to modify

a component as per the application requirement.

Better customizability will lead to a component with

better reusability in applications and thus help in

maintaining the component in the later phases.

It may be measured on the basis of writable

properties available in the component. The following

formula is used to evaluate this criterion:

 No. of writable properties

Customizability = ----------------------------------

 Total number of Properties

By using this metric, one can measure that how much

an interface method can be customized. Therefore, it

may be used to measure the reusability of the

component. Customizability of a component may

vary from 0 to 1.

B. Interface complexity Components are black box

in nature. The source code of these components is not

available. Application may interact with these

components only through their well - defined

interfaces. Interface acts as a primary source for

understanding, use and implementation and finally

maintenance for the component. Therefore, the

complexity of these interfaces plays a lead role while

measuring the overall complexity of the component.

Complex interfaces will lead to the high efforts for

understanding and customizing the components.

Therefore for better reusability, interface complexity

should be as low as possible. The following formula

is used by us to evaluate this criterion

Interface Complexity = 1 - (Number of interfaces

not required / Total number of interfaces provided)

More the unrequired interfaces more will be

complexity and hence less will be reusability. The

whole value is reciprocal because more complexity

will lead to less reusability, thus the reciprocal value

of complexity near to 1 will give us the reusability

value for the component.

C. Portability It is the ability of a component to be

transferred from one environment to another with

little modification, if required. It is typically

concerned with reuse of component on new platforms.

Manoj Kumar Singh et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 5), June 2014, pp.66-72

 www.ijera.com 69 | P a g e

The component should be easily and quickly portable

to specified new environments if and when necessary,

with minimized porting efforts and schedules. For

better reusability, component should be highly

portable, means; it should be supported by several

platforms. Here, for the proposed work, portability

may be defined as:

 No. of platforms the component can

support

Portability = --

 Total no. of platforms that may be

required by CBSS

By using this metric, one can measure that how

many platforms can be supported by the COTS

component. Therefore, it may be used to measure the

reusability of the component. Portability of a

component may vary from 0 to 1.

D. Observability It may defined as the ability to

understand component‟s functional elements as per

described in its manual. Functional elements may be

referred as the interfaces, operations, or events that a

component may support or require from other

components to achieve its functionality, i.e., to

implement its services. As the source code of the

component is not available better observability will

lead to a component with better reusability in

applications and thus help in using the component in

the later phases.

It may be measured on the basis of readable

functional elements available in the component. The

following formula is used to evaluate this metric by

washizaki et. al. [9]:

 No. of readable functional properties

Observability = --

 Total number of functional Properties

By using this metric, one can measure that

how many functional elements can be understood.

Therefore, it may be used to measure the reusability

of the component. Observability of a component may

vary from 0 to 1.

E. Documentation Level As the source code of the

COTS component is not available to the application

developer; documentation is the only source from

where he/she can understand the component.

Documentation provides the ease with which a user

can learn to operate, prepare inputs for, and interpret

outputs of a system or component.

Here, the term documentation of component

refers to component manuals, demos, help system,

and marketing information. A good quality document

must include functional description, installation

details, system administrator‟s guide, system

reference manuals etc. It may also require non -

functional details, like performance, security issues,

and previous maintenance activities, if any. It will

help in understanding the component and reusing and

integrating it easily in the CBSS. It will also help in

implementing the maintenance activities with less

effort. For present work, we categorize

documentation quality from low to High. The metric

proposed by us that can be used to measure the

documentation from this level scale can be described

as follows:-

 n

Documentation Level = ∑ Level of each

documentation Di provided / n * 3

 i=1

Where n is the total number of documents required

by the CBSS to clear understanding of the COTS

component. Documentation level metric value of a

component may vary from 0 to 1.

The goal of our work is to develop a tool for

estimating reusability of the software component. We

consider that reusability is a measure of factors

mentioned above. The values of these individual

factors can be measured by using the appropriate

metrics. Customizability metric is the ratio of

writable properties to the total number of properties.

Documentation and portability can be classified from

very low to very high categories.

IV. RESULT AND ANALYSIS
I. Implementation of Fuzzy system

Implementing a fuzzy system requires that the

different categories of the different inputs be

represented by fuzzy sets which, in turn, is

represented by membership functions. The domain of

membership function is fixed, usually the set of real

numbers, and whose range is the span of positive

numbers in the closed interval [0, 1]. There are total

11 membership functions available in Mat Lab. We

considered Triangular Membership Functions (TMF)

for our problem, because of its simplicity and heavy

use by researchers for prediction models [18]. It is a

three-point function, defined by minimum α,

maximum β and modal value m i.e. TMF (α, m, β),

where (α ≤ m ≤ β). This process is known as

fuzzification. These membership functions are then

processed in fuzzy domain by inference engine

based on knowledge base (rule base and data

base) supplied by domain experts and finally the

process of converting back fuzzy numbers into single

numerical values is called defuzzification [17].

II. Fuzzy Model

We propose that reusability of component-based

system is a measure of five factors mentioned above.

These combined factors can be used to measure the

reusability, as it cannot be measured directly. The

Manoj Kumar Singh et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 5), June 2014, pp.66-72

 www.ijera.com 70 | P a g e

proposed FL based model considers all five factors as

inputs and provides a crisp value of reusability using

the Rule Base. All inputs can be classified into fuzzy

sets viz. Low, Medium and High.

The output reusability is classified as Very High,

High, Medium, Low and Very Low. All possible

combinations (3
5

i.e. 243) of inputs are

considered to design the rule base. Each rule

corresponds to one of the five outputs based on the

expert opinions. Some of the proposed rules are

shown as:

1) If Customizability of components is Low,

Interaction Complexity among component is

High, Observability is Low, Portability is Low,

Document level is Low then it is very difficult to

maintain the system i.e. Reusability will be Very

Low.

2) If Customizability of components is Low,

Interaction Complexity among component is

High, Observability is Low, Portability is

Medium and Document level is Medium then

Reusability will be Low.

3) If Customizability o f components i s

M e d i u m , Interaction C o m p l e x i t y among

component is High, Observability is Medium,

Portability is Medium and Document level is

Medium then Reusability will be Medium.

4) If Customizability o f c o m p o n e n t s i s

M e d i u m , I n t e r a c t i o n C o m p l e x i t y

among component is Medium, Observability is

Medium, Portability is Medium and Document

Level is Medium then Reusability will be

Medium.

5) If C u s t o m i z a b i l i t y o f c o m p o n e n t s i s

M e d i u m , I n t e r a c t i o n C o m p l e x i t y

among component is Low, Observability is High,

Portability is Medium and Document Level is

Medium then Reusability will be high.

6) If Customizability of components is High,

Interaction Complexity among component is

Low, Observability is High, Portability is

Medium and Document Level is High then

Reusability will be high.

All 243 rules are inserted into the proposed

model and a rule base is created. Depending on a

particular set of inputs, a rule is fired. Using the rule

viewer, output i.e. reusability is observed for a

particular set of inputs using the Mat Lab Fuzzy tool

box.

Fig 4.1Fuzzification

In this figure set the five inputs customizability,

Interface complexity, Portability, documentation,

observablity and one outputs reusability. Set the rules

of these inputs and outputs.

Fig 4.2 Member Function of Customizability

In this FIS passing the input parameters of

customizability (low, medium, high) in between 0and

1.

Fig 4.3Member Function of Portability

In this FIS passing the input parameters of

portability (low, medium, high) in between 0and 1.

Manoj Kumar Singh et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 5), June 2014, pp.66-72

 www.ijera.com 71 | P a g e

Fig 4.4 Member Function of Documentation

In this FIS passing the input parameters of

Documentation (low, medium, high) in between 0and

1.

Fig 4.5 Member Function of interface complexity

In this FIS passing the input parameters of interface

complexity (low, medium, high) in between 0and 1.

Fig 4.6 Member Function of Reusability of

Component

This FIS passing the output parameters of Reusability.

Set the value of the reusability (very low, low,

medium high, very high).

Fig 4.7 Rules Viewer of Reusability of Component

Input values Customizability, Interface

complexity, Portability, Documentation,

observability and finding the value of reusability in

this FIS.

V. CONCLUSION AND SCOPE OF

THE FUTURE WORK
In this work, we have proposed a Component-

based software engineering (CBSE) (also known as

component-based development (CBD)) is a

branch of software engineering which emphasizes

the separation of concerns in respect of the wide-

ranging functionality available throughout a given

software system. This practice aims to bring about an

equally wide-ranging degree of benefits in both the

short-term and the long-term for the software itself

and for organizations that sponsor such software.

Software reuse is the process of creating

software systems from existing software rather than

building software systems from scratch. Reusable

software components are designed to apply the power

and benefit of reusable, interchangeable parts from

other industries to the field of software construction.

Reusable components add standardized interfaces and

object introspection mechanisms to widgets allowing

builder tools to query components about their

properties and behaviour. Software components need

not be visible in a running application; they only need

to be visible when the application is constructed.

Reusability metrics can measure the degree of

features that are reused in building applications. Even

if there are some metrics defined for the reusability

of object-oriented software (OOS), they cannot be

used for CBSD because these metrics require analysis

of source code. Building software systems with

reusable components bring many advantages to

Organizations. Reusability may have several direct or

indirect factors like cost, efforts, and time. It may

also have the issues like whether reusability is for

Manoj Kumar Singh et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 6(Version 5), June 2014, pp.66-72

 www.ijera.com 72 | P a g e

the entire component or only for a selected service

p r o v i d e d b y t h a t c o m p o n e n t . Reusability

is the most important criteria for selecting a

component for component-based systems. A highly

reusable component will help in better understanding

and low maintenance efforts for the application.

Therefore, it is necessary to estimate the reusability

of the component, before integrating it into the

system. Present thesis adopts Fuzzy logic based

approach to estimate the reusability of component. It

also proposes to improve the Reusability factors.

Fuzzy Logic based approach has several advantages

over other methods including Neural Network and

others. One major advantage is that it may also work

without the data. So, Fuzzy logic will result in

better understanding the reuse task.

REFERENCES
[1] “Sonu Mittal, Pradeep kumar Bhatia”

Framework for Evaluating and Ranking the

Reusability of COTS Components based upon

Analytical Hierarchy Process”, IIJST 2013

[2] T. Karthikeyan, J. Geetha,” A Study and

Critical Survey on Service Reusability

Metrics “,I.J. Information Technology and

Computer Science, 2012, 5, 25-31 Published

Online May 2012 in MECS

(http://www.mecs-press.org/) DOI:

10.5815/ijitcs.2012.05.04

[3] Arun Sharma, Rajesh Kumar, and P. S.

Grover, “A Critical Survey of Reusability

Aspects for Component-Based Systems”,

World Academy of Science, Engineering and

Technology 33 2007

[4] V. Subedha, S. Sridhar, “Design of Dynamic

Component Reuse and Reusability Metrics

Library for Reusable Software Components

in Context Level”, International Journal of

Computer Applications (0975 – 8887)

Volume 40– No.9, February 2012

[5] Vidushi Sharma and Prachi Baliyan,”

Maintainability Analysis of Component Based

Systems”, International Journal of Software

Engineering and Its Applications Vol. 5 No.

3, July, 2011

[6] Arun Sharma, Rajesh Kumar, P S Grover,

“Managing Component-Based Systems With

Reusable Components”, International Journal

of Computer Science and Security, Volume 1 :

Issue (2)

[7] Nasib S. Gill,” Reusability Issues in

Component-Based Development”., FEB

2011 ,IRCJA

[8] Danail Hristov, Oliver Hummel, Mahmudul

Huq, Werner Janjic,” Structuring Software

Reusability Metrics for Component-Based

Software Development”, ICSEA 2012: The

Seventh International Conference on

Software Engineering Advances

[9] Prakrit Trivedi, Rajeev Kumar ,” Software

Metrics to Estimate Software Quality using

Software Component Reusability”, IJCSI

International Journal of Computer Science

Issues, Vol. 9, Issue 2, No 2, March 2012

ISSN (Online): 1694-0814 www.IJCSI.org

[10] DR. P. K. SURI, NEERAJ GARG,” Software

Reuse Metrics: Measuring Component

Independence and its applicability in

Software Reuse”, IJCSNS International

Journal of Computer Science and Network

Security, VOL.9 No.5, May 2009

[11] “MIGUEL GOULAO, FERNANDO

BRITO,” An overview of metrics-based

approaches to support software components

reusability assessment “, Quinta da Torre,

2829-516 Caparica, Portugal

[12] „‟G.N.K.suresh babu and Dr.s.k.srivatsa “,

analysis and measures of software

Reusability “, IJRIC 2009, International

Journal of Review in Computing.

[13] “Majdi Abdellatiefab, Abu Bakar Md Sultana,

Abdul Azim Abd Ghania, Marzanah

A.Jabara” , Component-based Software

System Dependency Metrics based on

Component Information Flow

Measurements”, ICSEA 2011, The Sixth

International Conference on Software

Engineering Advances.

[14] “, V. Lakshmi Narasimhan, P. T.

Parthasarathy, and M. Das”, Evaluation of a

Suite of Metrics for Component Based

Software Engineering (CBSE)”, Informing

Science and information Technology vol 6

2009.

[15] “, Jeffrey S. Poulin”, Measuring Software

Reusability”, Third International Conference

on Software Reuse Brazil, 1994.

[16] “Mollaghasemi, M., Pet-Edwards, J.,

“Technical briefing: making multiple

objective decisions”, IEEE Computer Society

Press, Los Alamitos, CA 2007

[17] “V. bhardwaj, “Estimating reusability of

software components using Fuzzy logic”,

M.tech. Thesis, 2010.

[18] “Gill, N.S., “Importance of Software

Component Characteristics for Better

software Reusability”, ACM SIGSOFT SEN,

2006. 31(1): p. 1-3.

[19] “A. Sharma, P.S. Grover, and R. Kumar,

“Reusability assessment for software

components”, SIGSOFT Software

Engineering Notes, vol.34, No.2, February

2009, pp.1-6.

http://www.mecs-press.org/
http://www.ijcsi.org/

